The magnetic force acting on charged particle of charge $2\,\mu C$ in magnetic field of $2\, T$ acting in $y-$ direction , when the particle velocity is $\left( {2\hat i + 3\hat j} \right) \times {10^6}\,m{s^{ - 1}}$ is

  • [AIEEE 2012]
  • A

    $8\, N$ in $z-$ direction

  • B

    $8\, N$ in $y-$ direction

  • C

    $4\, N$ in $y-$ direction

  • D

    $4\, N$ in $z-$ direction

Similar Questions

Electrons moving with different speeds enter a uniform magnetic field in a direction perpendicular to the field. They will move along circular paths.

An electron with energy $0.1\,ke\,V$ moves at right angle to the earth's magnetic field of $1 \times 10^{-4}\,Wbm ^{-2}$. The frequency of revolution of the electron will be. (Take mass of electron $=9.0 \times 10^{-31}\,kg$ )

  • [JEE MAIN 2022]

Explain electric field and its source as well as magnetic field and its source.

A particle is projected with a velocity ( $10\ m/s$ ) along $y-$ axis from point $(2, 3)$ . Magnetic field of $\left( {3\hat i + 4\hat j} \right)$ Tesla exist uniformly in the space. Its speed when particle passes through $y-$ axis for the third time is : (neglect gravity)

Proton, deuteron and alpha particle of same kinetic energy are moving in circular trajectories in a constant magnetic field. The radii of proton, deuteron and alpha particle are respectively $r_p, r_d$ and $r_{\alpha}$ Which one of the following relation is correct?

  • [AIEEE 2012]